Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Inflammation ; 47(1): 264-284, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37833616

RESUMO

Doxorubicin (DOX) is a topoisomerase II inhibitor used in cancer therapy. Despite its efficacy, DOX causes serious adverse effects, such as short- and long-term cardiotoxicity. This work aimed to assess the short- and long-term cardiotoxicity of DOX and the role of inflammation and antioxidant defenses on that cardiotoxicity in a mice model. Adult CD-1 male mice received a cumulative dose of 9.0 mg/kg of DOX (2 biweekly intraperitoneal injections (ip), for 3 weeks). One week (1W) or 5 months (5M) after the last DOX administration, the heart was collected. One week after DOX, a significant increase in p62, tumor necrosis factor receptor (TNFR) 2, glutathione peroxidase 1, catalase, inducible nitric oxide synthase (iNOS) cardiac expression, and a trend towards an increase in interleukin (IL)-6, TNFR1, and B-cell lymphoma 2 associated X (Bax) expression was observed. Moreover, DOX induced a decrease on nuclear factor erythroid-2 related factor 2 (Nrf2) cardiac expression. In both 1W and 5M, DOX led to a high density of infiltrating M1 macrophages, but only the 1W-DOX group had a significantly higher number of nuclear factor κB (NF-κB) p65 immunopositive cells. As late effects (5M), an increase in Nrf2, myeloperoxidase, IL-33, tumor necrosis factor-α (TNF-α), superoxide dismutase 2 (SOD2) expression, and a trend towards increased catalase expression were observed. Moreover, B-cell lymphoma 2 (Bcl-2), cyclooxygenase-2 (COX-2), and carbonylated proteins expression decreased, and a trend towards decreased p38 mitogen-activated protein kinase (MAPK) expression were seen. Our study demonstrated that DOX induces adverse outcome pathways related to inflammation and oxidative stress, although activating different time-dependent response mechanisms.


Assuntos
Cardiotoxicidade , Fator 2 Relacionado a NF-E2 , Camundongos , Masculino , Animais , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Catalase/metabolismo , Doxorrubicina/efeitos adversos , Estresse Oxidativo , Interleucina-6/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Inflamação/tratamento farmacológico , Apoptose
2.
Arch Toxicol ; 97(12): 3163-3177, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37676301

RESUMO

Doxorubicin (DOX) is a potent chemotherapeutic agent used against several cancer types. However, due to its cardiotoxic adverse effects, the use of this drug may be also life-threatening. Although most cancer patients are elderly, they are poorly represented and evaluated in pre-clinical and clinical studies. Considering this, the present work aims to evaluate inflammation and oxidative stress as the main mechanisms of DOX-induced cardiotoxicity, in an innovative approach using an experimental model constituted of elderly animals treated with a clinically relevant human cumulative dose of DOX. Elderly (18-20 months) CD-1 male mice received biweekly DOX administrations, for 3 weeks, to reach a cumulative dose of 9.0 mg/kg. One week (1W) or two months (2 M) after the last DOX administration, the heart was collected to determine both drug's short and longer cardiac adverse effects. The obtained results showed that DOX causes cardiac histological damage and fibrosis at both time points. In the 1W-DOX group, the number of nuclear factor kappa B (NF-κB) p65 immunopositive cells increased and a trend toward increased NF-κB p65 expression was seen. An increase of inducible nitric oxide synthase (iNOS) and interleukin (IL)-33 and a trend toward increased IL-6 and B-cell lymphoma-2-associated X (Bax) expression were seen after DOX. In the same group, a decrease in IL-1ß, p62, and microtubule-associated protein 1A/1B-light chain 3 (LC3)-I, p38 mitogen-activated protein kinase (MAPK) expression was observed. Contrariwise, the animals sacrificed 2 M after DOX showed a significant increase in glutathione peroxidase 1 and Bax expression with persistent cardiac damage and fibrosis, while carbonylated proteins, erythroid-2-related factor 2 (Nrf2), NF-κB p65, myeloperoxidase, LC3-I, and LC3-II expression decreased. In conclusion, our study demonstrated that in an elderly mouse population, DOX induces cardiac inflammation, autophagy, and apoptosis in the heart in the short term. When kept for a longer period, oxidative-stress-linked pathways remained altered, as well as autophagy markers and tissue damage after DOX treatment, emphasizing the need for continuous post-treatment cardiac monitoring.


Assuntos
Antioxidantes , Neoplasias , Animais , Masculino , Camundongos , Antioxidantes/metabolismo , Apoptose , Proteína X Associada a bcl-2/metabolismo , Cardiotoxicidade/etiologia , Doxorrubicina/farmacologia , Fibrose , Inflamação/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Transdução de Sinais
3.
Braz. J. Pharm. Sci. (Online) ; 59: e20467, 2023. graf
Artigo em Inglês | LILACS | ID: biblio-1439510

RESUMO

Abstract Prolonged overexposure to catecholamines causes toxicity, usually credited to continuous adrenoceptor stimulation, autoxidation, and the formation of reactive pro-oxidant species. Non-differentiated SH-SY5Y cells were used to study the possible contribution of oxidative stress in adrenaline (ADR)-induced neurotoxicity, as a model to predict the toxicity of this catecholamine to peripheral nerves. Cells were exposed to several concentrations of ADR (0.1, 0.25, 0.5 and 1mM) and two cytotoxicity assays [lactate dehydrogenase (LDH) release and 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction] were performed at several time-points (24, 48, and 96h). The cytotoxicity of ADR was concentration- and time-dependent in both assays, since the lowest concentration tested (0.1mM) also caused significant cytotoxicity at 96h. N-acetyl-cysteine (1mM), a precursor of glutathione synthesis, prevented ADR-induced toxicity elicited by 0.5mM and 0.25mM ADR following a 96-h exposure, while the antioxidant Tiron (100µM) was non-protective. In conclusion, ADR led to mitochondrial distress and ultimately cell death in non-differentiated SH-SY5Y cells, possibly because of ADR oxidation products. The involvement of such processes in the catecholamine-induced peripheral neuropathy requires further analysis.


Assuntos
Epinefrina/agonistas , Doenças do Sistema Nervoso Periférico/classificação , Toxicidade , Neurônios/classificação , Nervos Periféricos/anormalidades , Brometos/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia
4.
Arch Toxicol ; 96(6): 1767-1782, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35306571

RESUMO

Mitoxantrone (MTX) is a topoisomerase II inhibitor used to treat a wide range of tumors and multiple sclerosis but associated with potential neurotoxic effects mediated by hitherto poorly understood mechanisms. In adult male CD-1 mice, the underlying neurotoxic pathways of a clinically relevant cumulative dose of 6 mg/kg MTX was evaluated after biweekly administration for 3 weeks and sacrifice 1 week after the last administration was undertaken. Oxidative stress, neuronal damage, apoptosis, and autophagy were analyzed in whole brain, while coronal brain sections were used for a closer look in the hippocampal formation (HF) and the prefrontal cortex (PFC), as these areas have been signaled out as the most affected in 'chemobrain'. In the whole brain, MTX-induced redox imbalance shown as increased endothelial nitric oxide synthase and reduced manganese superoxide dismutase expression, as well as a tendency to a decrease in glutathione levels. MTX also caused diminished ATP synthase ß expression, increased autophagic protein LC3 II and tended to decrease p62 expression. Postsynaptic density protein 95 expression decreased in the whole brain, while hyperphosphorylation of Tau was seen in PFC. A reduction in volume was observed in the dentate gyrus (DG) and CA1 region of the HF, while GFAP-ir astrocytes increased in all regions of the HF except in the DG. Apoptotic marker Bax increased in the PFC and in the CA3 region, whereas p53 decreased in all brain areas evaluated. MTX causes damage in the brain of adult CD-1 mice in a clinically relevant cumulative dose in areas involved in memory and cognition.


Assuntos
Comprometimento Cognitivo Relacionado à Quimioterapia , Animais , Autofagia , Masculino , Camundongos , Mitoxantrona/toxicidade , Neurônios , Estresse Oxidativo
5.
Biomolecules ; 11(11)2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34827723

RESUMO

Doxorubicin (DOX) is a topoisomerase II inhibitor commonly used in the treatment of several types of cancer. Despite its efficacy, DOX can potentially cause fatal adverse effects, like cardiotoxicity. This work aimed to assess the role of inflammation in DOX-treated infant and adult mice and its possible link to underlying cardiotoxicity. Two groups of CD-1 male mice of different ages (infants or adults) were subjected to biweekly DOX administrations, to reach a cumulative dose of 18.0 mg/kg, which corresponds approximately in humans to 100.6 mg/m2 for infants and 108.9 mg/m2 for adults a clinically relevant dose in humans. The classic plasmatic markers of cardiotoxicity increased, and that damage was confirmed by histopathological findings in both groups, although it was higher in adults. Moreover, in DOX-treated adults, an increase of cardiac fibrosis was observed, which was accompanied by an increase in specific inflammatory parameters, namely, macrophage M1 and nuclear factor kappa B (NF-κB) p65 subunit, with a trend toward increased levels of the tumor necrosis factor receptor 2 (TNFR2). On the other hand, the levels of myeloperoxidase (MPO) and interleukin (IL)-6 significantly decreased in DOX-treated adult animals. In infants, a significant increase in cardiac protein carbonylation and in the levels of nuclear factor erythroid-2 related factor 2 (Nrf2) was observed. In both groups, no differences were found in the levels of tumor necrosis factor (TNF-α), IL-1ß, p38 mitogen-activated protein kinase (p38 MAPK) or NF-κB p52 subunit. In conclusion, using a clinically relevant dose of DOX, our study demonstrated that cardiac effects are associated not only with the intensity of the inflammatory response but also with redox response. Adult mice seemed to be more prone to DOX-induced cardiotoxicity by mechanisms related to inflammation, while infant mice seem to be protected from the damage caused by DOX, possibly by activating such antioxidant defenses as Nrf2.


Assuntos
Cardiotoxicidade , Animais , Doxorrubicina , Camundongos , NF-kappa B , Estresse Oxidativo
6.
Toxicology ; 459: 152852, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34246718

RESUMO

Current cancer therapies are successfully increasing the lifespan of cancer patients. Nevertheless, cardiotoxicity is a serious chemotherapy-induced adverse side effect. Doxorubicin (DOX) and mitoxantrone (MTX) are cardiotoxic anticancer agents, whose toxicological mechanisms are still to be identified. This study focused on DOX and MTX's cardiac mitochondrial damage and their molecular mechanisms. As a hypothesis, we also sought to compare the cardiac modulation caused by 9 mg/kg of DOX or 6 mg/kg of MTX in young adult mice (3 months old) with old control mice (aged control, 18-20 months old) to determine if DOX- and MTX-induced damage had common links with the aging process. Cardiac homogenates and enriched mitochondrial fractions were prepared from treated and control animals and analyzed by immunoblotting and enzymatic assays. Enriched mitochondrial fractions were also characterized by mass spectrometry-based proteomics. Data obtained showed a decrease in mitochondrial density in young adults treated with DOX or MTX and aged control, as assessed by citrate synthase (CS) activity. Furthermore, aged control had increased expression of the peroxisome proliferator-activated receptor γ coactivator 1 α (PGC1α) and manganese superoxide dismutase (MnSOD). Regarding the enriched mitochondrial fractions, DOX and MTX led to downregulation of proteins related to oxidative phosphorylation, fatty acid oxidation, amino acid metabolic process, and tricarboxylic acid cycle. MTX had a greater impact on malate dehydrogenase (MDH2) and pyruvate dehydrogenase E1 component subunit α (PDHA1). No significant proteomic changes were observed in the enriched mitochondrial fractions of aged control when compared to young control. To conclude, DOX and MTX promoted changes in several mitochondrial-related proteins in young adult mice, but none resembling the aged phenotype.


Assuntos
Envelhecimento/efeitos dos fármacos , Antibióticos Antineoplásicos/toxicidade , Antineoplásicos/toxicidade , Doxorrubicina/toxicidade , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitoxantrona/toxicidade , Proteoma/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Citrato (si)-Sintase/metabolismo , Masculino , Camundongos , Mitocôndrias Cardíacas/enzimologia , Miócitos Cardíacos/patologia , Tamanho do Órgão/efeitos dos fármacos
7.
Pharmaceuticals (Basel) ; 14(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073506

RESUMO

Mitoxantrone (MTX) is a pharmaceutical drug used in the treatment of several cancers and refractory multiple sclerosis (MS). Despite its therapeutic value, adverse effects may be severe, namely the frequently reported cardiotoxicity, whose mechanisms need further research. This work aimed to assess if inflammation or oxidative stress-related pathways participate in the cardiotoxicity of MTX, using the mouse as an animal model, at two different age periods (infant or adult mice) using two therapeutic relevant cumulative doses. Histopathology findings showed that MTX caused higher cardiac toxicity in adults. In MTX-treated adults, at the highest dose, noradrenaline cardiac levels decreased, whereas at the lowest cumulative dose, protein carbonylation increased and the expression of nuclear factor kappa B (NF-κB) p65 subunit and of M1 macrophage marker increased. Moreover, MTX-treated adult mice had enhanced expression of NF-κB p52 and tumour necrosis factor (TNF-α), while decreasing interleukin-6 (IL-6). Moreover, while catalase expression significantly increased in both adult and infant mice treated with the lowest MTX cumulative dose, the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glutathione peroxidase only significantly increased in infant animals. Nevertheless, the ratio of GAPDH to ATP synthase subunit beta decreased in adult animals. In conclusion, clinically relevant doses of MTX caused dissimilar responses in adult and infant mice, being that inflammation may be an important trigger to MTX-induced cardiotoxicity.

8.
Interdiscip Toxicol ; 11(1): 13-21, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-30181708

RESUMO

Pixantrone (PIX) is an anticancer drug approved for the treatment of multiple relapsed or refractory aggressive B-cell non-Hodgkin's lymphoma. It is an aza-anthracenedione synthesized to have the same anticancer activity as its predecessors, anthracyclines (e.g. doxorubicin) and anthracenediones (e.g. mitoxantrone), with lower cardiotoxicity. However, published data regarding its possible cardiotoxicity are scarce. Therefore, this work aimed to assess the potential cytotoxicity of PIX, at clinically relevant concentrations (0.1; 1; and 10 µM) in both non-differentiated and 7-day differentiated H9c2 cells. Cells were exposed to PIX for 48 h and cytotoxicity was evaluated through phase contrast microscopy, Hoescht staining and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction and neutral red (NR) uptake assays. Cytotoxicity was observed in differentiated and non-differentiated H9c2 cells, with detached cells and round cells evidenced by phase contrast microscopy, mainly at the highest concentration tested (10 µM). In the Hoechst staining, PIX 10 µM showed a marked decrease in the number of cells when compared to control but with no signs of nuclear condensation. Furthermore, significant concentration-dependent mitochondrial dysfunction was observed through the MTT reduction assay. The NR assay showed similar results to those obtained in the MTT reduction assay in both differentiated and non-differentiated H9c2 cells. The differentiation state of the cells was not crucial to PIX effects, although PIX toxicity was slightly higher in differentiated H9c2 cells. To the best of our knowledge, this was the first in vitro study performed with PIX in H9c2 cells and it discloses worrying cytotoxicity at clinically relevant concentrations.

9.
Arch Toxicol ; 88(2): 515-31, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24177245

RESUMO

3,4-Methylenedioxymethamphetamine (MDMA; "ecstasy") is a recreational hallucinogenic drug of abuse known to elicit neurotoxic properties. Hepatic formation of neurotoxic metabolites is thought to play a major role in MDMA-related neurotoxicity, though the mechanisms involved are still unclear. Here, we studied the neurotoxicity mechanisms and stability of MDMA and 6 of its major human metabolites, namely α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA) and their correspondent glutathione (GSH) and N-acetyl-cysteine (NAC) conjugates, under normothermic (37 °C) or hyperthermic conditions (40 °C), using cultured SH-SY5Y differentiated cells. We showed that MDMA metabolites exhibited toxicity to SH-SY5Y differentiated cells, being the GSH and NAC conjugates more toxic than their catecholic precursors and MDMA. Furthermore, whereas the toxicity of the catechol metabolites was potentiated by hyperthermia, NAC-conjugated metabolites revealed higher toxicity under normothermia and GSH-conjugated metabolites-induced toxicity was temperature-independent. Moreover, a time-dependent decrease in extracellular concentration of MDMA metabolites was observed, which was potentiated by hyperthermia. The antioxidant NAC significantly protected against the neurotoxic effects of MDMA metabolites. MDMA metabolites increased intracellular glutathione levels, though depletion in thiol content was observed in MDMA-exposed cells. Finally, the neurotoxic effects induced by the MDMA metabolite N-Me-α-MeDA involved caspase 3 activation. In conclusion, this study evaluated the stability of MDMA metabolites in vitro, and demonstrated that the catechol MDMA metabolites and their GSH and NAC conjugates, rather than MDMA itself, exhibited neurotoxic actions in SH-SY5Y differentiated cells, which were differently affected by hyperthermia, thus highlighting a major role for reactive metabolites and hyperthermia in MDMA's neurotoxicity.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Febre/induzido quimicamente , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Neurônios/efeitos dos fármacos , 3,4-Metilenodioxianfetamina/metabolismo , 3,4-Metilenodioxianfetamina/toxicidade , Acetilcisteína/metabolismo , Acetilcisteína/farmacologia , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular/efeitos dos fármacos , Desoxiepinefrina/análogos & derivados , Desoxiepinefrina/metabolismo , Desoxiepinefrina/toxicidade , Febre/metabolismo , Glutationa/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/farmacocinética , Neurônios/metabolismo , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Temperatura
10.
Toxicol Lett ; 216(2-3): 159-70, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23194825

RESUMO

"Ecstasy" (3,4-methylenedioxymethamphetamine or MDMA) is a widely abused recreational drug, reported to produce neurotoxic effects, both in laboratory animals and in humans. MDMA metabolites can be major contributors for MDMA neurotoxicity. This work studied the neurotoxicity of MDMA and its catechol metabolites, α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA) in human dopaminergic SH-SY5Y cells differentiated with retinoic acid and 12-O-tetradecanoyl-phorbol-13-acetate. Differentiation led to SH-SY5Y neurons with higher ability to accumulate dopamine and higher resistance towards dopamine neurotoxicity. MDMA catechol metabolites were neurotoxic to SH-SY5Y neurons, leading to caspase 3-independent cell death in a concentration- and time-dependent manner. MDMA did not show a concentration- and time-dependent death. Pre-treatment with the antioxidant and glutathione precursor, N-acetylcysteine (NAC), resulted in strong protection against the MDMA metabolites' neurotoxicity. Neither the superoxide radical scavenger, tiron, nor the inhibitor of the dopamine (DA) transporter, GBR 12909, prevented the metabolites' toxicity. Cells exposed to α-MeDA showed an increase in intracellular glutathione (GSH) levels, which, at the 48 h time-point, was not dependent in the activity increase of γ-glutamylcysteine synthetase (γ-GCS), revealing a possible transient effect. Importantly, pre-treatment with buthionine sulfoximine (BSO), an inhibitor of γ-GCS, prevented α-MeDA induced increase in GSH levels, but did not augment this metabolite cytotoxicity. Even so, BSO pre-treatment abolished NAC protective effects against α-MeDA neurotoxicity, which were, at least partially, due to GSH de novo synthesis. Inversely, pre-treatment of cells with BSO augmented N-Me-α-MeDA-induced neurotoxicity, but only slightly affected NAC neuroprotection. In conclusion, MDMA catechol metabolites promote differential toxic effects to differentiated dopaminergic human SH-SY5Y cells.


Assuntos
Acetilcisteína/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Síndromes Neurotóxicas/etiologia , Sal Dissódico do Ácido 1,2-Di-Hidroxibenzeno-3,5 Dissulfônico/farmacologia , Butionina Sulfoximina/farmacologia , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dipeptídeos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Inibidores Enzimáticos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Glutationa/metabolismo , Humanos , Síndromes Neurotóxicas/patologia , Piperazinas/farmacologia
11.
Biomed Chromatogr ; 26(3): 338-49, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21656535

RESUMO

Paraquat (PQ) is an herbicide implicated in numerous fatalities, mainly caused by voluntary ingestion. Several methods have been used to quantify PQ in plasma and urine samples of intoxicated humans as a predictor of clinical outcome. There is no validated method for the analysis of PQ in postmortem samples. Therefore, the aim of this study was to develop an analytical method, using gas chromatography-ion trap mass spectrometry (GC-IT/MS) after solid-phase extraction, to quantify PQ in postmortem samples, namely in whole blood, urine, liver, lung and kidney, to cover the routes of distribution, accumulation and elimination of PQ. The method proved to be selective as there were no interferences of endogenous compounds with the same retention time as PQ and ethyl paraquat (internal standard). The regression analysis for PQ was linear in the range 0-10 µg/mL. The detection limits ranged from 0.0076 µg/mL for urine to 0.047 µg/mL for whole blood, and the recoveries were suitable for forensic analysis. The proposed GC-IT/MS method provided an accurate and simple assay with adequate precision and recovery for the quantification of PQ in postmortem samples. The proof of applicability was performed in two fatal PQ intoxications. A review of the analytical methods for the determination of quaternary ammonium herbicides is also provided for a better understanding of the presently available techniques.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Paraquat/metabolismo , Mudanças Depois da Morte , Humanos , Limite de Detecção , Paraquat/sangue , Paraquat/urina
12.
Toxicology ; 270(2-3): 150-7, 2010 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-20170704

RESUMO

3,4-Methylenedioxymethamphetamine (MDMA; ecstasy), a drug of abuse commonly consumed at rave parties, is often taken in a polydrug abuse scenario, ethanol being one of the most associated drugs. Both MDMA and ethanol are mainly metabolized in the liver with formation of toxic metabolites. Our working hypothesis is that ethanol can modify the metabolism of MDMA through the cytochrome P450 system, and that this effect may be further potentiated by hyperthermia, a well-known consequence of MDMA abuse. To investigate these putative interactions we used primary rat hepatocyte cultures, which were exposed to 300 mM ethanol, 1.6 mM MDMA and the combination of both, at normothermic (36.5 degrees C) and hyperthermic (40.5 degrees C) conditions. After 24 h, the levels of MDA, HMA and HMMA in the cell culture medium were quantified by GC/MS. In addition, we repeated the same experimental design preceded by 1h incubation with 0.18 microM ketoconazole or 150 microM diallyl sulphide (CYP3A and CYP2E1 inhibitors, respectively), to evaluate the putative role of these isoenzymes in the observed effects. The results obtained showed that ethanol exposure increases the formation of some MDMA metabolites such as HMA (1.8 times increase) and MDA (1.5 times increase). This effect was markedly increased under hyperthermic conditions (HMA, MDA and HMMA formation increased 10, 6 and 16 times, respectively) and is mediated, at least partially, by CYP3A and CYP2E1.


Assuntos
Depressores do Sistema Nervoso Central/metabolismo , Depressores do Sistema Nervoso Central/toxicidade , Etanol/metabolismo , Etanol/toxicidade , Alucinógenos/metabolismo , Alucinógenos/toxicidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Animais , Biotransformação , Morte Celular/efeitos dos fármacos , Separação Celular , Células Cultivadas , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Cromatografia Gasosa-Espectrometria de Massas , Hepatócitos/enzimologia , L-Lactato Desidrogenase/metabolismo , Masculino , Oxirredução , RNA/biossíntese , RNA/isolamento & purificação , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Mol Neurobiol ; 39(3): 210-71, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19373443

RESUMO

"Ecstasy" [(+/-)-3,4-methylenedioxymethamphetamine, MDMA, XTC, X, E] is a psychoactive recreational hallucinogenic substance and a major worldwide drug of abuse. Several reports raised the concern that MDMA has the ability to induce neurotoxic effects both in laboratory animals and humans. Despite more than two decades of research, the mechanisms by which MDMA is neurotoxic are still to be fully elucidated. MDMA induces serotonergic terminal loss in rats and also in some mice strains, but also a broader neuronal degeneration throughout several brain areas such as the cortex, hippocampus, and striatum. Meanwhile, in human "ecstasy" abusers, there are evidences for deficits in seronergic biochemical markers, which correlate with long-term impairments in memory and learning. There are several factors that contribute to MDMA-induced neurotoxicity, namely, hyperthermia, monoamine oxidase metabolism of dopamine and serotonin, dopamine oxidation, the serotonin transporter action, nitric oxide, and the formation of peroxinitrite, glutamate excitotoxicity, serotonin 2A receptor agonism, and, importantly, the formation of MDMA neurotoxic metabolites. The present review covered the following topics: history and epidemiology, pharmacological mechanisms, metabolic pathways and the influence of isoenzyme genetic polymorphisms, as well as the acute effects of MDMA in laboratory animals and humans, with a special focus on MDMA-induced neurotoxic effects at the cellular and molecular level. The main aim of this review was to contribute to the understanding of the cellular and molecular mechanisms involved in MDMA neurotoxicity, which can help in the development of therapeutic approaches to prevent or treat the long-term neuropsychiatric complications of MDMA abuse in humans.


Assuntos
N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Animais , Humanos , N-Metil-3,4-Metilenodioxianfetamina/química , N-Metil-3,4-Metilenodioxianfetamina/farmacocinética , Polimorfismo Genético , Fatores de Tempo
14.
Chem Res Toxicol ; 22(1): 129-135, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19053318

RESUMO

Isolated heart cells are highly susceptible to the toxicity of catecholamine oxidation products, namely, to catecholamine-glutathione adducts. Although cellular uptake and/or efflux of these products may constitute a crucial step, the knowledge about the involvement of transporters is still very scarce. This work aimed to contribute to the characterization of membrane transport mechanisms, namely, extraneuronal monoamine transporter (EMT), the multidrug resistant protein 1 (MRP1), and P-glycoprotein (P-gp) in freshly isolated cardiomyocytes from adult rats. These transporters may be accountable for uptake and/or efflux of adrenaline and an adrenaline oxidation product, 5-(glutathion-S-yl)adrenaline, in cardiomyocyte suspensions. Our results showed that 5-(glutathion-S-yl)adrenaline efflux was mediated by MRP1. Additionally, we demonstrated that the adduct formation occurs within the cardiomyocytes, since EMT inhibition reduced the intracellular adduct levels. The classical uptake2 transport in rat myocardial cells was inhibited by the typical EMT inhibitor, corticosterone, and surprisingly was also inhibited by low concentrations of another drug, a well-known P-gp inhibitor, GF120918. The P-gp activity was absent in the cells since P-gp-mediated efflux of quinidine was not blocked by GF120918. In conclusion, this work showed that freshly isolated cardiomyocytes from adult rats constitute a good model for the study of catecholamines and catecholamines metabolites membrane transport. The cardiomyocytes maintain EMT and MRP1 fully active, and these transporters contribute to the formation and efflux of 5-(glutathion-S-yl)adrenaline. In the present experimental conditions, P-gp activity is absent in the isolated cardiomyocytes.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Desoxiepinefrina/análogos & derivados , Epinefrina/metabolismo , Glutationa/análogos & derivados , Miócitos Cardíacos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Acridinas/farmacologia , Animais , Catecolaminas/metabolismo , Catecolaminas/toxicidade , Corticosterona/farmacologia , Desoxiepinefrina/metabolismo , Glutationa/metabolismo , Masculino , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Tetra-Hidroisoquinolinas/farmacologia
15.
Toxicology ; 254(1-2): 42-50, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-18848861

RESUMO

Ethanol is frequently consumed along with 3,4-methylenedioxymethamphetamine (MDMA; ecstasy). Since both compounds are hepatotoxic and are metabolized in the liver, an increased deleterious interaction resulting from the concomitant use of these two drugs seems plausible. Another important feature of MDMA-induced toxicity is hyperthermia, an effect known to be potentiated after continuous exposure to ethanol. Considering the potential deleterious interaction, the aim of the present study was to evaluate the hepatotoxic effects of ethanol and MDMA mixtures to primary cultured rat hepatocytes and to elucidate the mechanism(s) underlying this interaction. For this purpose, the toxicity induced by MDMA to primary cultured rat hepatocytes in absence or in presence of ethanol was evaluated, under normothermic (36.5 degrees C) and hyperthermic (40.5 degrees C) conditions. While MDMA and ethanol, by themselves, had discrete effects on the analysed parameters, which were slightly aggravated under hyperthermia, the simultaneous incubation of MDMA and ethanol for 24h, resulted in high cell death ratios accompanied by a significant disturbance of cellular redox status and decreased energy levels. Evaluation of apoptotic/necrotic features provided clear evidences that the cell death occurs preferentially through a necrotic pathway. All the evaluated parameters were dramatically aggravated when cells were incubated under hyperthermia. In conclusion, co-exposure of hepatocytes to ethanol and MDMA definitely results in a synergism of the hepatotoxic effects, through a disruption of the cellular redox status and enhanced cell death by a necrotic pathway in a temperature-dependent extent.


Assuntos
Etanol/toxicidade , Hepatócitos/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Sinergismo Farmacológico , Temperatura Alta , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar
16.
Toxicology ; 252(1-3): 64-71, 2008 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-18761051

RESUMO

3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) is an amphetamine derivative drug with entactogenic, empathogenic and hallucinogenic properties, commonly consumed at rave parties in a polydrug abuse pattern, especially with cannabis, tobacco and ethanol. Since both MDMA and ethanol may cause deleterious effects to the liver, the evaluation of their putative hepatotoxic interaction is of great interest, especially considering that most of the MDMA users are regular ethanol consumers. Thus, the aim of the present study was to evaluate, in vivo, the acute hepatotoxic effects of MDMA (10mg/kg i.p.) in CD-1 mice previously exposed to 12% ethanol as drinking fluid (for 8 weeks). Body temperature was continuously measured for 12h after MDMA administration and, after 24h, hepatic damage was evaluated. The administration of MDMA to non pre-treated mice resulted in sustained hyperthermia, which was significantly increased in ethanol pre-exposed mice. A correspondent higher increase of hepatic heat shock transcription factor (HSF-1) activation was also observed in the latter group. Furthermore, MDMA administration resulted in liver damage as confirmed by histological analysis, slight decrease in liver weight and increased plasma transaminases levels. These hepatotoxic effects were also exacerbated when mice were pre-treated with ethanol. The activities of some antioxidant enzymes (such as SOD, GPx and Catalase) were modified by ethanol, MDMA and their joint action. The hepatotoxicity resulting from the simultaneous exposure to MDMA and ethanol was associated with a higher activation of NF-kappaB, indicating a pro-inflammatory effect in this organ. In conclusion, the obtained results strongly suggest that the consumption of ethanol increases the hyperthermic and hepatotoxic effects associated with MDMA abuse.


Assuntos
Depressores do Sistema Nervoso Central/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/patologia , Etanol/toxicidade , Febre/induzido quimicamente , Alucinógenos/toxicidade , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Alanina Transaminase/sangue , Animais , Antioxidantes/metabolismo , Aspartato Aminotransferases/sangue , Temperatura Corporal/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Sinergismo Farmacológico , Ensaio de Desvio de Mobilidade Eletroforética , Febre/fisiopatologia , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , NF-kappa B/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos
17.
Eur J Pharmacol ; 588(2-3): 232-8, 2008 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-18519135

RESUMO

5,7-Dihydroxytryptamine (5,7-DHT), is an experimentally widely used selective serotonergic neurotoxin, though the mechanisms of toxicity remain to be fully elucidated. In the present study, we evaluated 5,7-dihydroxitryptamine (5,7-DHT) induced serotonergic neurotoxicity in foetal raphe serum free cultures from the rat. For this purpose, a model of foetal raphe serum free neuronal cultures from the rat was established, containing about 16% serotonergic neurons and studied up to 3 months. Two weeks old raphe cultures were exposed to the serotonergic neurotoxin 5,7-DHT (concentration range 10-100 microM) for 72 h, after which the medium was replaced and neurotoxicity was evaluated by immunocitochemistry 1 week later. Lactate dehydrogenase release into the medium, 72 h after exposure to 5,7-DHT, showed a concentration-dependent neurotoxicity. To access morphologically the serotonergic toxicity tryptophan hydroxylase (TPH) was used as a specific marker of these neurons. Immunocitochemistry using TPH antisera showed a concentration-dependent serotonergic neurotoxicity induced by 5,7-DHT. Serotonergic neurons showed the typical pattern of "pruning" accompanied by axon terminals and dendrites loss, which were either partial or total. The axotomy induced by the neurotoxin was morphologically characteristic of retrograde axonal degeneration. Fluoxetine (0.1 microM) pre-treatment reduced 5,7-DHT-induced serotonergic neurotoxicity. These results indicate that the mechanism by which 5,7-DHT-induces serotonergic neurotoxicity is, at least partially, dependent on the toxin uptake by the serotonin transporter. Finally, we have established a robust model of primary raphe neuronal culture to evaluate serotonergic neurons development and the mechanisms of toxicity involving this neuronal population.


Assuntos
5,7-Di-Hidroxitriptamina/toxicidade , Núcleos da Rafe/efeitos dos fármacos , Animais , Células Cultivadas , Meios de Cultura Livres de Soro , Relação Dose-Resposta a Droga , Fluoxetina/farmacologia , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Degeneração Neural , Fibras Nervosas/efeitos dos fármacos , Núcleos da Rafe/patologia , Ratos
18.
Toxicol In Vitro ; 22(4): 910-20, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18325728

RESUMO

3,4-Methylenedioxymethamphetamine (MDMA) is frequently consumed at "rave" parties by polydrug users that usually take this drug in association with ethanol. In addition, many young people are repeatedly exposed to ethanol, which likely leads to tolerance phenomena. Both compounds are metabolized in the liver, with formation of hepatotoxic metabolites, which gives high relevance to the evaluation of their putative toxicological interaction. Therefore, the aim of this study was to evaluate the toxicity induced by 0.8 and 1.6 mM MDMA to freshly isolated hepatocytes obtained from ethanol-treated mice whose tap drinking water was replaced by a 5% ethanol solution for 1 week and, afterwards, by a 12% ethanol solution for 8 weeks (ethanol group) comparatively to non-treated animals (non-ethanol group). The hepatocytes were incubated under normothermic and hyperthermic conditions in order to simulate in vitro the hyperthermic response induced in vivo by MDMA, a condition that has been recognized as a life-threatening effect associated with MDMA exposure and implicated in its hepatotoxicity. Six mice treated under the same protocol as the ethanol group were used for histological analysis, and compared to non-ethanol-treated animals. The pre-treatment of mice with ethanol caused a significant decrease in the hepatocytes yield in the isolation procedure comparatively to the non-ethanol group, which can be explained by an increase in collagen deposition along the hepatic parenchyma as observed in the histological analysis. The initial cell viability of hepatocytes suspensions was similar between ethanol and non-ethanol groups. However, the ethanol group showed a higher GSH oxidation rate, which was enhanced under hyperthermia. Additionally, a concentration-dependent MDMA-induced loss of cell viability and ATP depletion was observed for both groups, at 41 degrees C. In conclusion, the repeated treatment with ethanol seems to increase the vulnerability of freshly isolated mice hepatocytes towards pro-oxidant conditions, as ascertained by the increase in collagen deposition, lower hepatocyte yield and decreased glutathione levels. However, MDMA toxicity to the isolated hepatocytes was independent of ethanol pre-treatment, while significantly dependent on incubation temperature.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Etanol/toxicidade , Hepatócitos/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Colágeno/efeitos dos fármacos , Colágeno/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Febre/metabolismo , Glutationa/efeitos dos fármacos , Glutationa/metabolismo , Hepatócitos/metabolismo , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , N-Metil-3,4-Metilenodioxianfetamina/administração & dosagem , Oxirredução/efeitos dos fármacos , Temperatura
20.
Chem Res Toxicol ; 20(8): 1183-91, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17630707

RESUMO

High concentrations of circulating biogenic catecholamines often exist during the course of several cardiovascular disorders. Additionally, coronary dysfunctions are prominent and frequently related to the ischemic and reperfusion phenomenon (I/R) in the heart, which leads to the release of large amounts of catecholamines, namely adrenaline, and to a sustained generation of reactive oxygen species (ROS). Thus, this work aimed to study the toxicity of adrenaline either alone or in the presence of a system capable of generating ROS [xanthine with xanthine oxidase (X/XO)], in freshly isolated, calcium tolerant cardiomyocytes from adult rats. Studies were performed for 3 h, and cardiomyocyte viability, ATP level, lipid peroxidation, protein carbonylation content, and glutathione status were evaluated, in addition to the formation of adrenaline's oxidation products and quinoproteins. Intracellular GSH levels were time-dependently depleted with no GSSG formation when cardiomyocytes were exposed to adrenaline or to adrenaline with X/XO. Meanwhile, a time-dependent increase in the rate of formation of adrenochrome and quinoproteins was observed. Additionally, as a new outcome, 5-(glutathion- S-yl)adrenaline, an adrenaline adduct of glutathione, was identified and quantified. Noteworthy is the fact that the exposure to adrenaline alone promotes a higher rate of formation of quinoproteins and glutathione adduct, while adrenochrome formation is favored where ROS production is stimulated. This study shows that the redox status of the surrounding environment greatly influences adrenaline's oxidation pathway, which may trigger cellular changes responsible for cardiotoxicity.


Assuntos
Adrenocromo/metabolismo , Oxirredutases do Álcool/metabolismo , Epinefrina/metabolismo , Glutationa/metabolismo , Membranas Intracelulares/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo , Agonistas Adrenérgicos/farmacologia , Agonistas Adrenérgicos/toxicidade , Animais , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Glutationa/análogos & derivados , Membranas Intracelulares/metabolismo , Cinética , Oxirredução , Ratos , Ratos Sprague-Dawley , Xantina/metabolismo , Xantina Oxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...